Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

نویسندگان

  • Hyun-sik Kim
  • Kyu Hyoung Lee
  • Joonyeon Yoo
  • Jehun Youn
  • Jong Wook Roh
  • Sang-il Kim
  • Sung Wng Kim
چکیده

Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi₂Te₃-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te₃. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier c...

متن کامل

Improved Thermoelectric Performance of (Fe,Co)Sb<sub>3</sub>-Type Skutterudites from First-Principles

Skutterudite materials have been considered as promising thermoelectric candidates due to intrinsically good electrical conductivity and tailorable thermal conductivity. Options for improving thermal-to-electrical conversion efficiency include identifying novel materials, adding filler atoms, and substitutional dopants. Incorporating filler or substitutional dopant atoms in the skutterudite com...

متن کامل

Synergistic Optimization of Thermoelectric Performance in P-Type Bi0.48Sb1.52Te3/Graphene Composite

We report the synergistic optimization of the thermoelectric properties in p-type Bi0.48Sb1.52Te3 by the additional graphene. Highly dense Bi0.48Sb1.52Te3 + graphene (x wt%, x = 0, 0.05, 0.1 and 0.15) composites have been synthesized by zone-melting followed by spark plasma sintering. With the help of scanning electron microscopy, the graphene has been clearly observed at the edge of the grain ...

متن کامل

Mechanism of thermal conductivity suppression in doped silicon studied with nonequilibrium molecular dynamics

We examined the underlying mechanisms for thermal conductivity suppression in crystalline silicon by substitutional doping with different elements (X = boron, aluminum, phosphorus, and arsenic). In particular, the relative effects of doping-induced mass disorder, bond disorder, and lattice strain were assessed using nonequilibrium molecular dynamics simulations. Stillinger–Weber potential param...

متن کامل

Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi₂Te₃, n-type Bi₂Te₃ co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017